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Synopsis
The consequences of the hypothesis - recently advanced by C. Møller - that 

gravitation may be described by a tetrad field, are examined by studying the most 
general Lagrangian obtained as a linear combination of invariants. A particular 
choice of these can be made on the basis of correspondence with the Newtonian 
theory. The field equations obtained from this particular Lagrangian, although 
somewhat different from those of Moller, give rise, in the case of a static, spheri­
cally symmetric system, to the usual Schwarzschild metric. Moreover, in the cases 
considered explicitly by Møller the solutions of the field equations are the same.

A conserved energy-momentum complex having the property that the energy 
density is localizable is also derived. The use of a tetrad field to describe the 
structure of space-time allows the introduction of spinor fields, and in particular 
of the neutrino field, in a natural way. A new coupling between fermions and 
gravitation also follows from this theory.



I. Introduction

he concepts of energy and momentum and of conservation laws, which have
1 played a very important part in all physics, have some peculiar features in the 
theory of general relativity. Owing to the general covariance of the theory, there 
exist an infinite number of conservation laws, all equally valid(1).

The selection from these of what may be called the “energy-momentum" con­
servation law is essentially a matter of physical interpretation. Various “complexes", 
each with certain definite properties, have therefore been proposed(2). In particular, 
Møller(3) introduced some conditions which must be satisfied in order that a complex 
be the energy-momentum complex. Especially he required that the energy density be 
localizable, i. e. a scalar under the group of purely spatial coordinate transformations, 
and that the total energy and momentum be transformed like a four-vector with respect 
to the Lorentz group. Subsequently Møller(4) was able to show that no complex 
satisfying both these conditions can be formed within the framework of Einstein’s 
theory.

To come out of this situation, he proposed a new formulation of the theory (4) (5), 
in which the fundamental variables of the gravitational field were assumed to be the 
16 components of a tetrad field, connected by ten relations with the metric tensor.

There are two possible approaches to tetrad fields. The usual one consists in 
regarding additional degrees of freedom associated with tetrads as non-physical. In 
the framework of this philosophy tetrads may be used as working tools in the same 
wav as one uses potentials in electrodynamics. However, similarly as in electrodynam­
ics, where physically meaningful quantities have to be gauge-invariant, the entire 
physical content of the theory must, in the usual approach to tetrads in general relativity, 
stay invariant with respect to arbitrary Lorentz rotations of tetrads (which may change 
from point to point). When using tetrads in this spirit, one remains strictly on the level 
of orthodox general relativity.*

The second approach to tetrads, which is closer in spirit to that advocated by 
Møller, is based on the hypothesis that (ill 16 degrees of freedom of tetrads may be 
physically meaningful; here one demands of the theory that its physical quantities 
are invariant only with respect to constant tetrad rotations.

* The question how convenient tetrads are in the treatment of global conserved quantities (and in other 
problems of the usual theory) is discussed by one of us (J. P.) in Proceedings of the Warsaw Conference on 
Relativistic Theories of Gravity.

1*
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Once this assumption is made, it is possible to obtain an energy-momentum 
complex satisfying both conditions. Since, for a given physical situation, the deter­
mination of the tetrad field requires sixteen equations, Møller added to the usual 
Einstein equations a set ol six equations qpaß = 0, w here (paß is a skew tensor function 
of the tetrads and their derivatives. He was then able to show that, in the linearized 
case, his equations

z '/ s" I (1.1)

Va/Î 0 I

are equivalent to the Einstein weak-field equations, and that the solution of (1.1) for 
a static, spherically symmetric system gives rise to the usual Schwarzschild metric. 
The new’ theory is thus in agreement with all known experimental facts. However, 
the general expression for (paß contains a certain arbitrariness, which it would seem 
interesting to try to eliminate by attempting a variational-principle formulation of the 
Moller theory. This is what we will try to do in the present paper.

In other words, we intend to investigate the theory that follows from these 
assumptions: (1) the Moller hypothesis that all 1G degrees of freedom of tetrads are 
physically meaningful (invariance only with respect to constant tetrad rotations); (2) 
that a canonical formulation of the theory in terms of an action principle is possible.

We see that in this way we investigate a theory that from a heuristic point of 
view is wider than orthodox general relativity, which so beautifully solves all problems 
meaningful in the framework of its philosophy. Nevertheless we are of opinion that 
a generalization of this type is worthy of investigation.

Il is of importance to realize that even the dynamical laws determining in this 
theory the metric tensor may be slightly different from the usual Einstein equations; 
nevertheless the usual philosophy of general relativity (including the principle of 
equivalence) here remains the same.

Some misunderstanding may arise in connection with the possibility of Eern- 
parallelismus in this theory, which might be taken to be contradictory to the orthodox 
interpretation of general relativity. We would point out that when, in the usual theory, 
there exists a physical vectorial field, e. g. potentials of the vectorial mesonic field, 
the notion ol Eernparallelismus to that vector may be introduced without violation 
of any first principles of the theory. When one understands tetrads as four physical 
vectorial fields fixed by consistent dynamical laws, and the metric as a secondary 
concept defined in terms of these fields, there is no need to change the usual inter­
pretation. There is, however, the1 possibility that the dynamical laws governing tetrads 
are different from the usual ones, which determine tetrads only up to .r-dependent 
Lorentz rotations.

The chief purpose of this paper is precisely Io investigate the possibilities asso­
ciated with the small latitude that can be allowed in the choice of the dynamics de­
termining tetrad quantities. The interpretation of the theory, however, stays the same 
as in orthodox general relativity.
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In the next section the tetrad formalism is briefly introduced, and our notations 
fixed. In section III the general structure of the Lagrangian 2 of the tetrad field is 
studied. The actual construction of the most general £ by means of the invariants 
formed of tetrads is made in section IV.

As noted by Moller, the space-time continuum used in this theory differs from 
the usual Riemannian space by the existence of a tetrad in every point. This fact has 
interesting consequences in geometry; for instance it allows the introduction of the 
concept of absolute parallelism of two vectors at distant points.

For the definition of absolute parallelism and its developments, such as the 
absolute derivation, the reader is referred to the work of Møllen (5). Here we only 
want to point out that the most important geometrical notion in this space is that of 
torsion, characterized by a tensor A^ß^y such that when A^ß^y = 0, space-time is flat, 
in accordance with this the torsion tensor is used in section IV to build up the invariants. 
The Lagrangian is written as a linear combination of four of these invariants; hence 
it will contain four arbitrary constants; these are determined in section V, which deals 
with the linearized form of the theory. The result is that if we choose two constants 
equal to zero, the linearized theory is equivalent to that of Einstein.

Since we assume this to be a necessary condition, we obtain in this way a Lagrang­
ian £ depending on two constants Åy and k2 only; the further development of the 
theory will be based on this £. From the linear approximation it also follows — which 
is interesting to note that Àÿ1 is equal to the Einstein gravitational constant. Although 
the constant k2 will remain undetermined in this work, it seems possible that further 
developments will be able to give us some information on it.

Another characteristic of a theory of this type is that, together with the group 
of coordinate transformations, there is another group leaving the Lagrangian invariant, 
i. e. a simultaneous and equal rotation of all the tetrads. This is shown in section VI 
and is also used in appendix B to introduce spinors by means of the representations 
of these rotations. This simple and natural way of defining spinors has two note­
worthy consequences: (a) the derivative of a spinor can be consistently defined as 
the partial derivative; (b) since the theory is invariant only with respect to the group 
of proper tetrad rotations, the neutrino has its own place in the theory, and its existence 
is related to the fundamental structure of space-time.

The field equations are derived from the Lagrangian in section VII. They turn 
out to be different from those proposed by Moller. This is due to the fact that the 
possibility of using the Levi-Civita tensor in the construction of <pxß was overlooked, 
whereas the same tensor plays a fundamental part in this work. The field equations 
derived in section VII are

I- *2 F<aß,. - - I
^2 ^[oeß] ^\ocß] > I

where again Gxß is the Einstein tensor and Fxß is analogous to (pxß. In our case, anyway 
Fxß has a symmetric as well as an antisymmetric part. The matter tensor has been 
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divided, in (1.2), into a boson part and a fermion part. The existence of the new 
“skew” equation A'2 = - 7’^/3] ‘s interpreted to mean that the space-lime structure
is determined by matter not only through the symmetric energy-momentum tensor, 
but also through the skew part 7’^j which is connected w ith the spin angular-momen­
tum tensor. All the physical content of the theory now becomes clearer: the usual 
Riemannian space-time is not general enough to describe classical matter as well as 
spinor fields; this deficiency is shown in the lack of a satisfactory (in the Moller sense) 
energy-momentum complex and of a natural way to introduce spinors (6).

If we assume that the influence of a boson and that of a fermion on the space­
time structure are qualitatively different, we need a scheme wider Ilian that of Einstein, 
and this might be a space with a built-in tetrad lattice. For the theory to be in agree­
ment with experimental facts it is further necessary that tin*  tetrad field obtained by 
solving eqs. (1.2) in the ease of a static, spherically symmetric system, gives rise to 
the Schwarzschild metric. That it is so, is shown in section V111. it is interesting that 
this particular tetrad field is just identical with that obtained by Møli.eh for the 
same case.

Finally, in section IX, the energy-momentum conservation law is discussed. It 
is shown that the energy-momentum complex we derive satisfies both Moller con­
ditions. In addition to a conservation law' Tayg = (), a lensorial conservation law is 
seen to follow from the structure of the field equations. In general, Ta^ can be written 
in the same form as the Moller energy-momemtum complex:

(1.3)

V-uifry, (1.4)

and the only non-tensorial term in (1.3) is 2Paj>. Both the superpotential and Ta^ 
can tie written as a linear combination of the corresponding Moller term and a new one:

T ß = T + T' ß

In the case of a static, spherically symmetric system tin1 new term vanishes, while 
in the linearized case it can be written as a divergence and is moreover symmetric.

The use of tetrads in general relativity was already proposed by Einstein in 
1928 (7). He tried, however, to use the six new degrees of freedom contained in the 
tetrad field to describe electromagnetism. The equations derived by Einstein were 
shown to be incompatible with the Schwarzschild solution (8).

II. Preliminaries and Notations

Let V4 be a normal hyperbolic Riemannian space characterized, in arbitrary 
coordinates .ra, by the symmetric metric tensor pa^(.r). Greek indices take the values 
0, 1,2,3. Phe signature ( + is assumed for the metric. The indices labelling
the vectors of a tetrad w ill also be denoted by Greek letters, but with a “roof” above 
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them, so that the index â takes the values Ô, 1, 2, 3. The lunstein summation convention 
is assumed.

Now, because of the normal character of V4, one may always construct at a 
given point four vectors orthogonal to each other, one of them being time-like and 
normalized to plus one, the remaining ones space-like and normalized to minus one. 
Denoting the covariant components of these vectors by f/“(.r), we may summarize 
their orthonormality properties in

gaß g*g^  = g*ß,  (II. 1)

where g<*ß  is the numerical matrix of special relativity,

(11.2)

Note that the existence of such vectors is equivalent to Hilbert’s condition. We will 
also assume that the (/“(æ) as functions of x are differentiable, i. e. that they change 
from point to point in a regular way. The normal and roofed indices may be raised 
or lowered by means of the quantities gaß, g^ß, g^ß, gäß respectively. (II.l) may now 
be written as

(11.3)

Multiplying (11.3) by four arbitrary scalars A^ and by gß, one obtains 

and from this follows
(11.4)

(11.5)

Eq. (11.5) is the fundamental relation between the ten components of the metric 
tensor and the sixteen components of tetrads. While the tetrads completely determine 
the metric, the reverse is not true.

A Lorentz transformation of the roofed indices, i. e. a tetrad rotation

with
(il.«)

(11.7)

leaves the metric tensor invariant.
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Therefore, if one understands as 1/ — .

Adopting the notation

17.. (kt <Jaß >

!/'■ = <lel 1 -fyl’ ■ <l<’l
one obtains

y- y'- - 1

(17 02

y" (17: A

(11.8)

(119)

the positive branch of | , one gets

]/-y.. (11.10)

A

A.a

A a

Aa

with the remark that, considering all metric quantities 
to a vector A four different kinds of component: Aa, 

explains how one of them can be expressed through the

We conclude this section 
as known, one may attribute 
Aa, A®, Aæ. I’he table below 
others.

/"•h

A-ß

•'/; 9^ A" - A..

III. The Lagrangian of the Tetrad Field

fhe principal aim of this work is the formulation of an action principle

d.l -

for the tetrad field. We assume that the Lagrangian satisfies the following conditions:
(I) it must be a scalar (or pseudoscalar) density with respect to the group of 

coordinate transformations ;
(II) it must be a scalar or pseudoscalar density with respect to the subgroup 

of constant Lorentz rotations of the tetrads, i. e. the rotations for which

â7?â(.c)
----  = 0;

dx/l

(III) it must be a function of the y^(.x) and their first derivatives, and further 

it must be bilinear in the qx o(.r).J oc, p v 7
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This is sufficient to determine the general form of £. In fact, because of the covariance 
requirement, the first derivatives of the tetrads can appear in £ only in the form of 
covariant derivatives, i. e. as

(Ill.l)

Expressing the metric tensor in terms of tetrads and substituting in the Christofell
symbol, we obtain the relation between the covariant and non-covariant derivatives

r â i-01 (1 •’a
V-« = 9? -9*  )> ("1.2)'’aß; y '’a [aß]yav, p '’an,v' v

where
4 ê = </ (d" V1 - 6V <5#) + (ôv V1 - ôv ô^) + q° (ôva ô^-ôv 0%). (III.3)

[aß]y Jüi ß y y ß’ Jßy y a a y' Jy' ß a aß' v '

Therefore we can get a Lagrangian satisfying (I), (11) and (HI) if we write it in the
form

The quantity = Zj[^l [«01 must be a tensor with respect to coordinate

transformations. It is clear that it can be constructed only from quantities like the 
tetrads and the Levi-Civita tensor.

Without specifying the form of it is already possible to draw some
results from the form (111.4) of the Lagrangian. By varying the tetrad field in (II 1.4) 
we obtain the equations of motion

-2 [a: ],< (111.5)

To derive (II 1.5) we have added to (111.4) the Lagrangian of an external Held and 
have introduced the notation

From (111.5) a conservation law follows immediately:

= 0.
. ,A

<r. 'ß + -^(a: agV (1II.6)

By foe/?] and <a/9> we will indicate antisymmetry and symmetry with respect to the indices a, ß.
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Note that both terms in (111.6) arc vector densities. Introducing the notation

we may w rite (111.6) as
0,

(111.7)

(HI.«)

(111.9)

w inch is a completely
that

covariant equation. Furthermore, from (111.5) it is easily seen

(III.10)

(HI.11)

These results will be used in section IX to obtain a conserved energy-momentum 
complex.

IV. Construction of the Lagrangian from the Invariants of the Tetrad Field

In section 111 the general structure of the Lagrangian has been studied. Now 
the most general form of £ satisfying our conditions will be written explicitly as a 
linear combination of the invariants bilinear in the first derivatives of the tetrad field.

In order to construct the invariants we introduce the tensors

^äß-y’ (IV.1)

<x. /I ^ß,o^^äy ^<x;ß 9ß-,oc)9ä.y’ (IV.2)

= ^-[aß]^ yßaß> (IV.3)

(IV.4)

(IV.5)

/ItL^l _ 1 ^C)(y^v A ,
71 T _ 9 '1 7l[Zi’]T’ (IV.6)

1 4 t^J
7J-[£?<T]'F — 9 '/ocdi>71 T» (IV.7)

where the tensor is defined by
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^aßyö = _ g. eaßyö

Vocßyö = .7- 8txßyö

and ea^0, e^ßy^ are the numerical Levi-Civita symbols.
is the fundamental torsion tensor in our Riemannian space with a built-in 

tetrad lattice (5).
All the invariants bilinear in the na o can now be written in the form a;p

[aß] y
yjtA/Zll’

The use of the conditions 1 and 11 gives us the following seven invariants:

l2 = g-.AlxßiYA^,

(IV.8)

(IV.9)

h-g- A^A^r, (IV.10)

h-^g^A^A^, (IV.11)

h-^g^A^A^. (IV.12)

A[xß]yA[h,}!,. (IV.13)

It~ t“tAr gW A^A^,,. (IV.14)

All these are pseudoscalar densities with respect to the group of coordinate 
transformations, /4, Z2> As are pseudoscalar also with respect to constant Lorentz 
rotations of tetrads, while I1, • • ■, /4 are scalar with respect to this group (see section VI).

The term Z4 can be written as a full divergence; in fact

(IV. 15)

Using the inverse relation of (IV.6) 

and the relation

we lind

+ ^[/bl^V hl'- 3CT»

-2ig^Ä^aAleß}y,

(IV. IG)

(IV.17)

(IV.18)
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1
9

.9^ ^[aßjy (A-h»]// ^[Z/z])’+ ^[r/iJÂ ^[v/zp.)

= 2 i g^ /1[^] (IV. 19)

It is clear that of the invariants 71,- • -, /4 only one among the lirst three need be 
considered in the Lagrangian; we select for later use the term 73.

Let us now turn to the other invariants, I}, /3. It will be useful to introduce
some linear combination of them, such as

Pl = 2 ;2 + 4 Z3 (IV.21)

1 1 —„ -
/V = 12 - (IV.22)

P3 = ’ J 2 ■ 4 f3 = Trfy Yxliy- (IV.23)

Il is easy to see that is equal to the Moller gravitational Lagrangian, 
dillering Ironi j/— g only by a divergence (see appendix A). Our general Lagrangian 
now takes the form

(IV. 24)

and in it we have four arbitrary constants.

V. The Linear Approximation
and the Complete Determination of the Lagrangian

We shall study in this section some consequences derivable from the Lagrangian 
(IV.24) in order to get information on the constants The approach used
is the study of the linear form of the theory; in particular we require that the line­
arized field equations are the same as the Einstein ones plus, of course, a set of six 
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equations. To put it in a différent form, we ask that our theory contains the Newtonian 
theory of gravitation as a limiting case.

To perform the linearization we consider an “insular” system of matter and 
assume that space-lime is asymptotically Hat and that cartesian coordinates are used 
al infinity. Then the tetrad can be written in the form

P 2 !? (V.l)

The term A0, describing the deviation of space-time from flatness, is assumed to be 
everywhere small of the first order. In all the following calculations terms of orders 
higher than the first in will be neglected. Introducing the quantity

(V.2)

and substituting (V.l), (V.2) in (11.5), we find that

9a/y + h<<xß> > (V.3)

where is the special-relativity metric tensor.
Hence, in the linear approximation, the tetrad field is described by the tensor 

/ia^, whose symmetric part gives the metric tensor while the antisymmetric part de­
scribes the new degrees of freedom of the theory.

The torsion tensor obtained from (V.l) is

(V.4)

Substituting (V.4) in (IV.13), (IV.21), (IV.22), (IV.23) and introducing the notation

and the dual

we obtain

/) = /) a"<a >

H"“1- L^hlea],

P2 =

(V.5)

(V.6)

(V.7)

(V.8)
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(V.9)

(V.10)

The linearized field equations, in the absence of matter, are then

(V.ll)

(a)

(b) if ip is any of the quantities g?

everywhere and must go to zero al least like 1/r for

the boundary 
asymptotically 
Hence we can

lim
r —> oo

in an

Equations (Wil), (V.12) cannot be solved unless we specify 
conditions. To derive the linear approximation we have assumed an 
Hat space-time in which cartesian coordinates are used al infinity, 
introduce the “outgoing waves’’ boundary conditions <5>

arbitrary fixed interval; the ip and the first-order

I'm
r —> oc

for all values of /0 = /+- 

derivatives must also be bounded

In writing down (V.7), . . . , (V.10), we have neglected divergences; in particular, 
the expansion of has been replaced by that of |/- g /? since, of course, they can 
only differ by a divergence.

The equations obtained by varying with respect to h<a^> are just the Einstein 
weak-field equations. This means that the constants a2, a3, must be so chosen 
that in the equation obtained by varying the Lagrangian with respect to h<aß> all terms 
depending on h<aß> itself come only from ^A1 • The first thing one would think of is 
then to assume

ô? <)r ^<xß ^ocß’ ’I must satisfy the condition 

i () 
c d I I

„3 = "4 = 0 

so that the Langrangian becomes

^ = "1 VM + a2P2.

r co .



Nr. 4 15

'Ehe conditions a, b require the matter system to be an insular system, but they 
do not exclude the presence of gravitational waves emitted by it. An important conse­
quence (5) of a, b is that, given a quantity ip satisfying b, the only solution of the equation

□ ip = 0 (V. 14)
is

ip = (). O -l 5)

'Phis result allows us to solve equation (V.12); in tact we obtain from it by 
derivation

□ )7t^l = o
and, using (V.14), (V.15),

/7[a^])j8 = O. (V.16)

Equation (V.16) just says that 7i[/zr] can be written by means of a vector potential Afi as 

^t/^1 = v ~ n ■ (V>1 7)

For an arbitrary vector field A„ the given by (V.17) satisfy the field equations 
(V.12); hence these cannot determine the skew degrees of freedom of the tetrad field.

In this situation it is impossible to attribute any physical meaning to the 
The Lagrangian we obtain when choosing a3 = a4 = 0 is thus completely unsatisfactory, 
although we can derive the linearized Einstein equations from it.

A choice of constants giving a better result is

u2 = = 0 <q 0 u4 0.

In this case the field equations are

ß + (« rr + £ >/'•) Z. ß, j (v lg)

+ (V.19)

To derive (V.18) we added to our Lagrangian a matter term depending on the 
only through the metric tensor, so that

= 0.
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All the macroscopic physical systems are of this type, so that equations (V.18), 
(V.19) are what we need in order to see whether the linear form of our theory con­
tains the Newtonian theory of gravitation.

'faking tin1 derivative with respect to xv of (V.19), we obtain

□ /) = 0 (V.20)
and, using (V.1 t), (V.1 5),

= (V.21)

'This result reduces (V.18) to the Einstein weak-field equations. The other equation,
(V.19), still contains both the symmetric and the skew part of hflv. 

A complete separation can be achieved in harmonic coordinates,
de Donder condition

where the

(V.22)

holds. 'This, together with (V.21), allows us to write (V.18), (V.19) as

-^□<^ = 2 T<l,v>,

h[aß],ß ^[ßy],<x

Since from (V.21) it follows again that

(V.24) becomes simply 
□ ^[xß]

so that eventually our field equations are reduced to

-^□^ = 2

(V.23)

(V.24)

(V.25)

(V.23)

(V.2G)

This is the same result as that obtained by Moller(5).
the value of the constant o1 :

From (V.23) we can determine

(V.27)

where k is the Newtonian gravitational constant. These results allow us to assume 
as Lagrangian of the tetrad field

V ~ A’] + Â'2 (\ .28)
with given by (V.27).

About the other constant, k2, we have no information; since k2 drops out of 
the equations also in the case of a spherically symmetric system, for which the solution 
of the field equations derivable from (V.28) will be given in section VIII, we shall 
not be able to give its value in this paper. We have a feeling that k2 is related to some
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non-classical aspect of the gravitational field and that it might become important in a 
quantized version of this theory.

We would also point out that the results (V.23), (V.26), and also those obtained 
in section VIII for the Schwarzschild case, are left unchanged if we add to the La­
grangian (V.28) the term u2P2. ^or simplicity we assume a2 = 0, but the possibility 
of adding the term a2P2 to our Lagrangian is worth noting.

VI. The Invariance Properties of the Lagrangian with Respect to the Group 
of Tetrad Rotations

In this section we want to study the behaviour of the Lagrangian

£ = A] + Å2 73 (VI. 1 )

with respect to the group of tetrad rotations, defined by

9«O) - (VI.2)

and already introduced in section If.
The matrix La^ can in general be a function of the coordinates. We have already 

noted that the metric tensor is invariant under the substitution (VI.2). The same is 
true of the Ricci tensor and of the scalar curvature P, in accordance with the 
fact that the Einstein field equations cannot alone fix the tetrad field.

Let us now consider the Lagrangian (VI. 1). It is clear that under constant tetrad 
rotations, i. e. when = 0, all the tensors not containing tetrad indices, like A o 
will be transformed like scalars. On the other hand, the quantity g: is transformed 
like a density:

|L^|- (VI-4) 

It follows that the two terms £M and /3 definde by (IV.21) and (IV.13) are transformed 
like a pseudoscalar and a scalar density respectively under the whole rotation group. 
The Lagrangian £ is invariant only with respect to the subgroup of proper tetrad 
rotations.

Let us now look into the general case l)Ut limiting ourselves to the
subgroup of proper rotations. For simplicity, the infinitesimal transformation

+ (VI.5)
Mat.Fys. Skr.Dan.Vid.Selsk. 2, no. 4. 3
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for which the condition (VI.3) becomes

will be considered.
(VI.6)

After a somewhat long but simple calculation the variation of £ can be written as

where

and

Ô £ =

A „ g-(ô" 0/l - /)' (h .[ßy] 5 ß/. a v v <x'l -'<xo

(VI.7)

(VI.8)

(VI.9)

Note that the variation of £m is a four-divergence, as it should be, since the 
theory deduced only from this term is equivalent to the Einstein theory.

The quantity has the properly that

(VI.10)

This can be seen more easily if we use absolute derivatives and the identity (5)

^[<xß]/l/// + ^ß/a ^lß ^[ocß]/i ^/l - () • (VI.11)

A stroke, Aa/^, here means absolute derivative. In fact, from the connection between 
the absolute and the covariant derivative (5) we obtain

From the definition (VI.8) of W?- we lind that
v 7 ap

(VI.12)

(VI.13)

Substituting (VI. 13) in (VI. 12) and using the identity (VI. 11), we find the result (VI. 10). 
The variation of the Lagrangian can now be written simply as

»ä-iZk^W^Z^ (VI.14)

We see that £, contrary to the Einstein Lagrangian, is not invariant under a position­
dependent tetrad rotation. The condition

<5 £ s 0 (VI. 15)
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can be satisfied only when we assn me

(VI.16)

It follows that the Lagrangian (VI.1) is invariant only with respect to the group of 
proper constant tetrad rotations. The existence of this “gauge” group will be used 
in appendix B to introduce spinors.

VII. The Field Equations

In this section we want to derive explicitly the lield equations from our Lagrangian, 
which we now write as

V 1 b S> 4- b J 4- - $'(b) 4- '-'<■/') ( V I I n
~ - 2 A1 h Å2 y3 + 2 + ’ V ' 1 U 1 )

The Lagrangian of matter has been divided into two parts; the first, , depends 
on the tetrads only through the metric tensor, whereas this assumption does not 
apply to the second,

Examples of physical systems of the first kind are all the classical systems, 
such as the electromagnetic field, a hydrodynamical system and a lield of boson 
particles. To the second type belongs the Lagrangian of fermions, like electrons and 
neutrinos, which must be written in terms of spinors.

To evalute the variation of the action integral we first consider the terms 
and üff of the Lagrangian. Since

where

« ( (À-! i!„ + S£>) </4 ,r - « \ (Å-, Si + ).’£>) </4 .r, 
•T? •’<)

(VII.2)

we have

\ X'*,$>„  +Ja­
va's

vq 1 L>(7

(V1I.3)

But

so that we obtain
(VI1.4)

.*1  Sm + ££’) d4x - 2 jj (Å-, + TW’*')  IJ[>ß å£ d*  .r, (VII.5)

3*
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6^ = /^ 1

and /?a^ is the Ricci tensor.

f/: 'p{b)oc(i = ô 0(0)

Ötkß ’

On introduction of the quantities

tlie variational principle can be written as

,(/) Q
o

and the resulting field equations are

(VII.(i)

(VH-7)

(VII.8)

(VII.9)

(V 11.10)

Fhe evaluation of and of =(& F? is performed in
(? Q 1

Multiplying (VI 1.10) by gG<x and using (A.24), (A.25),

appendix A.

we obtain another form
of the field equations:

0*

i- .r /y+2 øe. i(„T]«+.U*  .i(ey

[TÇ] CO

p(b) <xß _ p(f) txß

(VII.11)

While G0^ and 7'(ft)aß are symmetric tensors, //a^ and have no well-defined
symmetry property. Both 7,(ft)a^ and 7’(/)a/9 differ from the canonical energy-mo­
mentum matter tensor by a four-divergence.

Since our theory is generally covariant, the field equations must contain a set 
of four identities, in the same way as the Einstein equations are supplemented by the 



Nr. 4 21

Bianchi identities. To obtain these identities we apply the method of infinitesimal 
coordinate transformations to the scalar density £*.

* See, for instance, reference 10 and also C. Møller, Proceedings of the Warsaw Conference on General 
Relativity.

Therefore, under an arbitrary infinitesimal coordinate transformation

.r'a = ,r« + (,r) (VII.12)

the local variation of V' is given by

(VII.13)

Integrating (VI1.13) over a finite region Q in space-time, we obtain, for all functions 
£a which vanish on the boundary of Q together with their first-order derivatives,

dS
•'o <

(VII.14)

where

Substituting
(VII.15)

5V
(5(P'’aa

ô 0',7aa

à(i- d4 x = 0,
Uc/- aa,7aa

di!
dq-•’ aa

<x (Jâ<x, ß

in (VI 1.14), we obtain, after a partial integration,

As the functions are arbitrary inside 42, the identities 

must hold.

Since in our case £ = - k\ £M + k2 /3, (VI 1.17) can be written as

Gi g^G^ + k.F^g^ ß = <)

or, on introduction of the quantity

as
[g- (Åq G/ + k2 Fß“)]<a - g: (Åq Gf + k2 Ff) 4?^ = 0 .

(VII. 16)

(VII.17)

(VII.18)

(VII.19)
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Using (he relalion(5)

we have from (VI 1.19)
a a /’« i ..aßy 1 ßy L ßy (VII.20)

(*1  G/ 4 Å-2 /</). x - (Ay 4 k2 /’/) = 0 ,

or, taking into account the symmetry properties of Ga? and yl)(Xß,

(VU.21)

In case k2 = 0, (VII.21) becomes the usual Bianchi identities.
An analogous result can be derived for the matter tensor, i. e.

- 0

7’(/)a^-7’(n^yt/ = 0.

(VI 1.22)

(VII.23)

That this is true can be seen by applying the method used Io derive (VI 1.21) to the 
scalar densities and and keeping in mind that the variation of £mwith respect 
to the matter field variables vanishes when the field equations are satisfied.

Going back to the field equations, we note that it is possible Io separate them 
into two independent sets, viz

J Ay G^ß 4- k2 F< > = T{b)a^ J
I £ = _ yd/) [aøj. / (VII.24)

We saw already in the linearized case the usefulness of this separation.
In general (Ad 1.24) shows that, contrary to what happens in the standard Ein­

stein theory, the space-time structure is determined by matter not only through the 
symmetric energy-momentum tensors 7,(&)a^ and 7,U)<a/5'> pu[ also through the 
skew term [a^].

To acquire an insight into the meaning of this fact, let us consider explicitly 
a system formed by a Dirac particle with its own gravitational field. The Lagrangian 
of this system can be written as

Vp is assumed to be given by

(VU.25)

-D 2 f/: ! V?+(a/< Y'./t imßrp) (y'/(a/z 4- ini y 1 ß) J (VII.26)

(see appendix B).
d w 

Note that in our formalism is simply the usual derivative
’ ' H 'vr
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Performing the variation of Sp with respect to and y, we arrive at the held 
equations

a1“ V’, /z _ 1111 ßv ~ =

V,+,/z V+ ß~ij V+ x,t (^/i = 0 •
(VII.27)

To obtain (VII.27) the identity

has been used.
From the form (VII.26) of ÜD, the continuity equation

(VII. 2 8)

J/‘.,(-(y+a/‘V);,. = 0 (VI 1.29)
is easily seen to hold.

Equations (VII.27) are reduced to the usual Dirac equations in the case of a 
hat space, since here we have 0, 0a = 0. In a space with torsion the extra

term — oc“ 0/z 7? represents the interaction between the fermion and gravitation. The 

similarity of this term to the one introduced in the same equations by the coupling 
with the electromagnetic field is worth noting.

The tensor 7,(^)a^ appearing in (VII.11) can easily be derived; in fact

= ~ -I’ {V+ a<z ~ V 1 ’ aOC V’} •
(VII.30)

As a consequence of the field equations (VII.27), vanishes so that only the second 
term of (VI 1.30) has to be taken into account.

We now consider the weak-field limit of the equation

Aq + A2 Fa^ = - 7’^. (VI 1.31)

In harmonic coordinates, i. e. when we use the coordinate condition (V.22), 
this is

+ -TDtf, (VII.32)

where

(VII.33)

and
0^ = 0? aß. (VI 1.34)
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4 he quantity TDqP is the special-relativity energy-momentum tensor of a Dirac 
particle. It satisfies the relation

'l'nïf.fl - (VI 1.35)

as can easily be verified by means ol the zero-order Dirac equations

I V u ~ iin fiw = h
, „ + (VII. 36)

I V , // å + lin ß = •

faking the derivative with respect to ,v^ of (VII.32) and using (VII.35), we find

 (VI 1.37)

If again we supplement equations (VII.32) with the boundary conditions a, b 
used in section V, it follows from (VI 1.37) that

/»[aÂ]JL = 0, (VI 1.38)

^[/ZV] = V ~ /LI • (VI 1.39)

If we use (VII.38), (VII.39) and separate the symmetric and the skew part of (VII.32), 
the field equations become

/q □ = 2 7’öo a^3> (VII.40)

It is well known* 9) that the antisymmetric part of TD^ is related to the spin 
angular-momentum tensor of a Dirac particle. In fact

’rD[a.ß] = £ c^xßy 

‘ 0 « x) , y

and (VII.40), (VII.41) tell us that while the symmetric part of the field is coupled to 
the symmetric energy-momentum tensor of matter, (he antisymmetric part is coupled 
to (he spin angular momentum.

I he solution ol equations (VII.40), (VII.41) may give us some information about 
the constant k2, but it is clear that a meaningful solution can be obtained only within 
the framework of a quantized theory.

Io conclude this section we want to add the remark that equations similar to 
(VII.27), i. e. with the same coupling term <Z>/z, are valid also for the neutrino field. 
Using the two-spinor formalism (see appendix B), we can write the neutrino Lagrangian as

= (VII.42)

Again is simply the partial derivative.
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Performing the variation with respect to VU aRd y’B anfi using (VI 1.28), we 
obtain from (VII.42) the equations

1
2

and the continuity equation

= (v’a gflABy,B)-,B = o.

(VII.43)

(VI 1.44)

VIII. Solution of the Field Equations for a Static, Spherically 
Symmetric System

In the case of a static, spherically symmetric system, the Held equations are 

/c1G“X^2F<^> = -7’((')^ (VIII.1)

7c2 F1“# = 0. (VI11.2)

Let us introduce an isotropic coordinate system, where the line element is of 
the type

3 
ds2 = b (r) (d.r0)2 - a (r) X a (c7.ra)2 (VIII.3)

i
and

7’^ = (.f^)2 + (.f2)2 + (.I'2)2 .

A solution of (VIII.2), satisfying also the relation (11.5), is then given by

(VIII.4)

where ea = (1, -1, — 1, —1) and the bracket after the index a means that no sum­
mation over a should be performed.

In fact, using (VIII.4) and the notation

we have
Mat.Fys.Skr. Dan.Vid.Selsk. 2, no.4 . 4
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A[Xß]y = I U« (e<x) <7aa)]'^

- 11 -W^Z ^n«’

0a - - [Zn a [/b]' iiy.

From (VIII.5), (VIII.6) it follows that

When we use this Iasi result, the tensor FaP becomes simply

= o rft)OT 4>„ A[ot/ + * A

(VIII.5)

(VI11.6)

(VIII.7)

(VII 1.8)

and by means of (VIII.5), (VIII.6) we have
F*ß _ (jn a ÿb)'{ [In (t:a) gaa)] ' ô£ nr

— [In (t'Tj .f/rr)j (^t f nQ

- (f<7) ,<7<ro)]' 9av no} ! l/n (lA) 9åå)Y åÅ n/i - lln (e/z) 9g/Y)Y ni} = 0 •

Since the tensor Faß vanishes, we are left with the equation

(VIII.10)

which determines in the usual way the two functions u(r), b(r).

'fhe fad that the Schwarzschild metric holds lor a static, spherically symmetric 
system is of course very important, since it allows us to say that this theory predicts 
correctly the results of the three experimental tests of the theory of general relativity.

IX. The Energy-Momentum Conservation Law

In section HI the conservation law

fC 2 = 0 (IX.l)

was obtained, and it was further shown that a superpotenlial g: Uj exists such that

(IX.2)
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from (A. 11), (A.20) it is easy to see that

(IX.3)

In the case of a static closed system, and in the absence of fermions, the metric 
is asymptotically of the Schwarzschild type, and the gravitational part of 0-, which 

• Åis bilinear in the first derivatives of g-., behaves at infinity like 1/r4. Hence the four 
quantities

(IX.4)

are constant in time and invariant under coordinate transformations. We can write 
(IX.4) in a manifestly covariant form, substituting for the surface .r0 = const a general 
three-dimensional, lime-like surface 27, as

(IX.5)

where is the unit vector orthogonal to 27, and </27 is the invariant volume 
element.

Using (IX.2), we can also express Pi as an integral over a two-dimensional, 
space-like surface 5, the boundary of .r0 =-const :

= Ll°* ] nk dS’ (IX.6)

where nk is a unit three-vector orthogonal to the surface element dS.
The relation between the four scalars /A and the total energy and momentum 

can easily be seen in the case of a closed system. We now want to introduce a con­
servation law of the usual form. To do this we introduce the tensor density

and the quantity
T 2 =1 V

i 2Clearly T/' satisfies the conservation law

From (IX.3), (IX.7) it follows that

(IX.7)

(IX.8)

(IN.9)

(IX.10)
4*
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where

is the Møller superpotential(5), and

(IX.11)

(IN. 12)

In the case of a static, spherically symmetric system and in isotropic coordinates 
the Moller superpotential is given by(5)

(IX.13)

where the notations of section VIII have been used. For the second term of ll1J* 1 we
obtain

(IX.14)

and, as an immediate consequence,

The quantity is now given by
(IX.15)

(IX.16)

and is equal to the Moller energy-momentum complex. It is worth remembering that 
in isotropic coordinates the Moller complex T^ is equal to the Einstein complex 0®^ 
so that we have in this case

T/ = Tm/ = øV- (IX. 17)

This result allows ns to identify T/, defined by (IX.8), as the energy-momentum 
complex.

We can now introduce the total energy and momentum for a closed system

/’M T,.0 </;î .
*-x0 = const

(IX.18)

The relation between Pv and P~ can be found if we write Pv in the form

(IX. 19)

where nt, dS and X have the same meaning as in (IX.6). Then, using the fact that, 
in isotropic coordinates and for r-^oo, 11” P ~ 0 Mm and == + (H -V and further that

( U.2vni°^ = 0, we have
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(IX.20)

The superpotential defined by (IN.7) is a true tensor density; hence is 
transformed like an antisymmetric tensor under the group of purely spatial trans­
formations

x'° = .v° I
(IX.21) 

.C'-VW). I

Then Uo will be transformed like a vector density under the same group, and in 
particular Uo[OjU])jM will be a scalar so that it is possible to give to To° = Uo[OjU]/t the 
meaning of an energy density.

In contrast to T is not a tensor. On the other hand T is a scalar under the Z v / r
“gauge” group of the constant tetrad rotations, while 6L is a vector with respect to 
that group. The same is true of Pv and P~. The situation does not lead to difficulties 
for the total energy and momentum (IX.4), since the tetrad rotations can be inter­
preted, for r->oo, as Lorentz transformations. In fact, to write the total energy mo­
mentum in the form (IX.6) is a compact way of saying that this quantity is transformed 
like a four-vector under Lorentz transformations.

When we consider the local properties of the field instead of the global quantity 
Pj, we are not allowed to use 0? and T^’ in the same way. In particular, Tft° and 

not 0" is the energy density, since it is not possible in general to give to the tetrad 
rotations the meaning of Lorentz transformations.

The explicit form of T,/ can be evaluated from its definition (IX.8):

Since

o

(IX.22)

(IX.23)

we have from (A.14), (A.21), (IX.11), (IX.12), (IX.23)

Mat. Fys. Skr. Dan.Vid. Selsk. 2, no. 4.

(IX.24)
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- ^’1 ^[OV] CT +

-0,0*-^:  +

+ *2 [ ^ A- r^>- <Ky v + U2^> 4%J .

(IX.25)

K , Q ,
The form (IX.22) of Tr , which was already derived by Møller <5) for his complex, 
allows ns to establish the transformation properties of our complex. In fact they are 
the same as for v\ namely

(IX.20)

Now we want to examine our energy-momentum complex in the weak-field case, 
and for simplicity we will assume that the coordinate condition (V.22) holds. Using 
again tin*  expression (V.l) for we have

From (IX.8) we find, using the coordinate condition,

t?= - ' K □ <-/>/ - t‘J>\ (IX. 28)

0

so that Tv is equal to the matter tensor, in agreement with the fact that the gravita­
tional complex is of the second order.

If we perform the evaluation of to the second order, using the h<xß> as 
determined from the first-order approximation, the tensor 

with
(IX.29)
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1M ß  1 l I / I fl , ß h .ß < ,u\ /)< ■ >
1 <x - £Å1 jv’<Â • > ~n<Å-> )n [I ,<x

(IX.30)

and

h <aß>,y (IX.31)

<VOC>, /I

(IX.32)

XxU^ = 1 k2 E^v h h
4

(IX.33)

is obtained.
The tensor lMß is just the Moller weak-field gravitational complex. It is note­

worthy that the symmetric term l'^ can be written as a divergence.

We want to thank Professor C. Møller for many illuminating discussions. One 
of us (C. P.) wants to express his gratitude to Professor C. Møller for the generous 
hospitality accorded to him by NORDITA.

Appendix A

The Einstein Tensor, the Tensor Fa? and the Evaluation of the Superpotential

We will recall here the connection, first discovered by Møller (4) between 
the tetrads and the curvature tensor.

Replacing in the basic formula

Ä^ß;y;ö Aß-tö;y Aaßyö

the vector A bv <7aa ■ ■ ' a and multiplying by c/A, we get

ßyö ~ ~ (yXß-, y; ô ~ 9aß; Ô; y] ‘ (A.l)

By contracting this we obtain

(A.2)

R-RX--g^gß(g« .-g*.  ).

<x v. \'J<x;(i;ß a a; p ; q / (A.3)
5*
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The last formula can easily be rew ritten as

</: R =

(A. I)
I .7 =(T

(A. 5)

(A.6)
-.9

in the formcan be decomposed

(A-7)

first derivatives of .
•’ (X.

(A.<S)

(A.9)

\

;
T(7O

v

'M-

The importance of this decomposition, 
for example be written as(]1)

'fhe mixed expression
ß

compared with the usual one, which can

H, T1 ß ;y

lies in the fact that is a scalar with respect to coordinate transformations, so that 
the action principle is of the type used in other field theories.

By means of (A.2), (A.4) the Ricci tensor can he written as

(? ;

\ a ; y

linear in the
. 1 , Ö . .
(A.7) ol it is better to start from the alternative expres-

and, multiplying by we have

MM J] 
M;BM

/
y y\ ' TOfT '

L)
where 11 k is bilinear and

To establish the form
sion of Raß and R given by Møller*5*:

J^ß  yQocßf^  (palß  ^ocß + yaß^ ,
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Using the fad

Defining
iß ‘fßaT Uß -fß 1

that the absolute derivative «h,,, = 0, we obtain
,J<xlß

r ß r<xß rß*

(jr = 7« = 7« *'ß ■'ßy. ’’ ßa.

I nßa B .o n .ß\ / oß av.- ("/)«’' + ^0 ■''/) 0 )/,, 1 e

- 0 /"“V '4 <7 r" • <!> f-V
Q ' / 2 ’’ P ' ‘ Qor ? /

(A.10)

(A.11)

and using the connection between the absolute and the covariant derivative* 5)

fßßQ] rßoß} ß 

i-ßlQ iß’Q iß

D

we easily find from (A. 10), (A. 11), (A. 12)

(7

and

rßßQ] /rdî?]

A decomposition similar to (A.7) can be found for

The term I3 of our Lagrangian can be written as

t y/.V/1 ß ß/.VIl 

\ri .7—7

Performing the variation of I3, we have

1
2 g-

- / y/.v/i ß BÅvu a\ irßy iirv aß

(A.12)

(A.13)

(A.14)

(A. 15)

(A. 16)

(A-17)

(A. 18)
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Evaluating (A. 17), (A.18), we obtain

We can now define the tensor

By means of (A.22) this is easily seen to be

+ 2 0a). T

A'y^-Al^^yfJ

±Ä«A[x°}e

- A«’a- ^aAx.x + 'irfa'^<I>x.ß
- <DaA‘J + /ott /i1 + <l>xAlllyia

The term /1T. T can be written in a form showing explicitly that i 
on the first derivatives of the tetrad field. In fact

= <r. ^[xß]y-T

[(J- 7]™^ qx 9- J
•’y ococ, ßj

9 aa
Jy,r aOC, ß

T

^txBy A „A Ô V "[yz] ô yl[ocß]

(A. 19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

depends only

(A.25)
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Appendix B

Tensors and Spinors

Here we want to discuss how the concepts of tensor and spinor can he introduced 
in our theory.

It is well known that in the special theory of relativity the definition of tensors 
can be given from two different points of view. One can define a vector as an object 
that is transformed like the coordinates under a Lorentz transformation, and a tensor 
as an object that is transformed like a product of vectors; or one can consider the 
representations of the Lorentz group and introduce in this wav both tensors and spinors 
as quantities that are transformed in a well-defined way under a Lorentz transforma­
tion.

Clearly the second approach is more fundamental, since it allows us to introduce 
both spinors and tensors in a very natural way.

When we go from the special to the general theory of relativity, we can use 
only the first point of view. In consequence, the spinor fields are not, in the general 
case, on the same basis as tensor fields, which is quite unsatisfactory^6*.

In the framework of our theory it seems possible instead to re-establish the 
connection between tensors and spinors, as representations of the Lorentz group, and 
the usual non-group-theoretical definition.

Let us consider a Riemannian four-space V4 in which a coordinate system 
.r°, • • •, .r3 has been introduced. In each point of this space we have a tetrad whose 
components are g^ (.r). The representation of the group L of the proper tetrad rotations 

gives us quantities
r ri OC * * ’ 

ß...

and
(Aß = 1,2)

which are tensors or spinors with respect to L. The connection between the “local” 
tensor 7’? and a “world” tensor 7,a (as defined from the first point of view)

ß-■■ ß-• •

is easily established with the help of the <ya:

The spinors, which have no “roofed” index, are simply equivalent to “world” scalars, 
while the connection between the “local” Dirac matrices ya and the “world” matrices

, ais again given by g~ :
a. a. Z

7 = ■
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From this point of view the constant tetrad rotations, which leave our theory invariant, 
play a part analogous to that of the Lorentz transformation of special relativity. In 
general there exists no relation between tetrad rotations and coordinate transformations, 
as there does between “local” tensors and spinors and “world” tensors. Only in the 
limit of Hat space-time and when we use cartesian coordinates are tetrad rotations 
equivalent to Lorentz transformations so that we obtain the formalism of special 
relativity as a limiting case.

Since we need it in section VI, we will now review the essential steps of the 
introduction of spinors, at the same time establishing our notations.

In this paper we consider three types of transformation:

(a) coordinate transformations .r'a = .r'a (.r^) (group (.);
(b) tetrad rotations A'® = A^ (group L);

(c) linear or antilinear uniinodular transformations in the two-dimensional complex 
spin space, induced by proper or improper tetrad rotations (group T).

Objects that are transformed appropriately with respect to all groups will be called 
tensors and spinors.

We remember that to the group L belong, in our theory, only the constant tetrad 
rotations.

A general tensor density 3V' “ is transformed like

where tv, w are the weights of the (a) and (b) transformations, is submitted to 
the condition (II.7) and is defined by = 0%.*  Note that det I /ÂJ is

p e p p ' . I p I
equal to one in the case of proper tetrad rotations and to minus one in the case of 
improper rotations.

We give the name contravariant spinor to the quantity y>A (A =1,2), which 
under linear, uniinodular transformations lAR, det | lAR\ = 1 . is transformed like**

lAnrB. (FL2)

* From this definition and ( II. 7) it follows that

P P7 ”
** In order to simplify the notations we shall not here discuss spinor density. For a more general formula­

tion see for instance the book by Corson (reference 9).
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Spin indices may be raised or lowered with the help of the metrical spinors

so that

(Jab ~
0 1

- 1 0

I v’a = 9 ab y,B-

AB Vb

The isomorphism between the groups 
the numerical spin matrices

1 0

0 1

L and T may be established with the help of

We have, in the case of proper tetrad rotations,

where

(B.6)

(the asterisk means complex conjugation).
The space of the spinors y>A is the space of the representation 2) (1/2, 0) of the proper 
rotation group. The conjugate representation

(B.7)

is transformed like the representation 2) (0, 1/2).
Under improper Lorentz rotations the spinors are transformed by means of the 

antilinear operators iAß, det | tAg | = 1,

(B.8)

which mix the representations 2)(^, and 2)^0, -j. The isomorphism between the 

improper rotations and the antilinear operators tAß is given by

(B.9)

The spin matrices <7- • can be defined in a general wav by the relations a. AB ° J J

(B.10)

(B.ll)
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The four spinors ip can be introduced as the direct sum of the two representations

\
V = ø’1

t he y matrices can be given by (lie definition

0
and satisfy the relation

Instead of the we will use the matrices a^, ß, which are all Hermitian, while y° 
is Hermitian and y1, y2, y3 are anti-Hermitian<12). The relation between the y and 
the a is

a 1,2,3)

Together with spinors we must deline their derivatives. In contrast Io what is 
the case in the usual theory, this can be done quite simply. In fad, since ipA is a scalar 
with respect to the group C, V’a,// *s transformed like a vector. Further, with respect 
to the group L ip4 „ is transformed like a spinor, as follows from the fact that only 
constant tetrad rotations belong lo L. So we can simply define the derivative of a two- 
or four-spinor as ^pAt/l or V7 and there is no need to introduce additive terms, as 
we must do in the Einstein theory.

C. Pellegrini, NORDITA, Copenhagen,
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